
XQuery 1.0 is Nearing Completion

Andrew Eisenberg

IBM, Westford, MA 01886

andrew.eisenberg@us.ibm.com

Jim Melton

Oracle Corp., Sandy, UT 84093

jim.melton@acm.org

Introduction
XQuery is a query language designed for querying

real and virtual XML documents and collections of

these documents. Its development began in the

second half of 1999. We provided an early look at

XQuery in Dec. 2002 [1]. XQuery 1.0 is now

approaching its publication as a W3C

Recommendation, and we would like to update you

on its progress. We can speak to this area with even

more authority than we did last time, as we both

became co-chairs of the W3C XML Query Working

Group [2] in summer 2004.

Paul Cotton (Microsoft), who chaired the

group since its inception, stepped down from this role

in October. His role in other consortia didn’t allow

him to stay with XQuery 1.0 all the way though its

publication as a Recommendation, although he

certainly wanted to do so. Paul deserves a great deal

of credit for the leading role that he has played in the

development of XQuery.

In his article, we concentrate on the changes

that have taken place to XQuery since our earlier

article. If you are unfamiliar with XQuery, then you

may want to take a look at our earlier article before

proceeding.

XQuery Status

The following documents [3] became Candidate

Recommendations (CR) in November 2005.

• XQuery 1.0: An XML Query Language

• XML Path Language (XPath) 2.0

• XSL Transformations (XSLT) Version 2.0

• XQuery 1.0 and XPath 2.0 Data Model (XDM)

• XQuery 1.0 and XPath 2.0 Functions and

Operators

• XQuery 1.0 and XPath 2.0 Formal Semantics

• XSLT 2.0 and XQuery 1.0 Serialization

• XML Syntax for XQuery 1.0 (XQueryX)

The XML Query WG has worked closely

with the XSL WG on most of these documents.

Most of the documents underwent two Last

Call Working Draft (WD) reviews, and a couple of

them underwent three such reviews. In the last

review, the WGs responded to approximately 600

comments.

The purpose of CR is to gain

implementation experience and give a WG

confidence that its specification is complete and

unambiguous. To this end, the XML Query WG

began the development of a test suite in the summer

of 2004. The XML Query Test Suite [4] now covers

about 75% of the features that make up XQuery. It

will take several months for this test suite to be

completed and to get reports back from

implementers.

With luck, and some hard work on the part

of a number of people, XQuery will become a W3C

Recommendation before the end of 2006.

The XQuery 1.0 and XPath 2.0
Data Model (XDM)
XDM defines five types beyond those defined in

XML Schema Part 2 [5]. Two of them were

discussed in our previous article:

xdt:dayTimeDuration and

xdt:yearMonthDuration, where xdt is a prefix

for the namespace

http://www.w3.org/2005/xpath-datatypes.

xdt:untyped is assigned to element nodes

that have not been validated or have been validated in

skip mode. xdt:untyped is also the type assigned to

a constructed element when the construction mode is

strip (discussed later). All of the children of an

element that is annotated as xdt:untyped are

annotated as xdt:untyped as well.

xdt:untypedAtomic is assigned to values

that are atomic, but which do not have a more

specific type. An attribute that has been validated in

skip mode are assigned this type.

xdt:anyAtomicType has

xs:anySimpleType as its base type, and is the type

from which all primitive atomic types are derived.

These include types such as xs:string, xs:float,

and xdt:untypedAtomic. This type is abstract in

nature, as no values will be annotated with this type.

From XQuery’s point of view, this type has been

inserted into the XML Schema type hierarchy.

 78 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

Serialization
Since we wrote our earlier article, the WGs have

created a new document, XSLT 2.0 and XQuery 1.0

Serialization [6]. The material in this document was

removed from XSLT 2.0, so that it could be shared

by XQuery 1.0. This document defines the XML,

XHTML, HTML, and TEXT output methods.

XQuery 1.0 makes use of only the XML output

method, while XSLT uses all of them.

A value of the XQuery 1.0 and XPath 2.0

Data Model (XDM) may be provided for

serialization. Sequence Normalization is performed,

followed by markup generation, character expansion,

and encoding.

Sequence Normalization is defined in

several steps, transforming a data model instance—a

sequence of values and nodes—into a single

document node. Atomic values are cast into strings

and then into text nodes. Document nodes are

discarded, but their children are retained. It is a

serialization error if an attribute node that is not a

child of an element node is placed into the resulting

document.

Serialization defines a number of parameters

that influence the result that is produced.

omit-xml-declaration, for example, can have

either yes or no for its value. Not all parameters are

used by a given output method.

The XML output method generates a well-

form XML document entity if the result of sequence

normalization is a document node with a single

element node child and no text node children.

Otherwise, a well-formed XML external general

parsed entity is generated. The specification doesn’t

say how to form these entities. Instead, it requires

that the same data model instance be produced by

parsing the result and using the resulting infoset to

generate a data model instance. Well, not exactly the

same: it describes ways in which they are allowed to

differ, such as the order in which attribute nodes

appear.

No attempt is made to preserve the type

annotations during serialization. If the result is XML

Schema validated, then new type annotations will be

created.

XQuery
XQuery 1.0 is almost a proper superset of XPath

2.0—XQuery 1.0 does not use XPath’s namespace

nodes and does not support XPath’s namespace axis.

Inputs to XQuery Processing

The data model instances that XQuery can operate on

can be provided in a number of ways. Our earlier

article described the context item, denoted by “.”, and

the fn:doc and fn:collection functions. The

xf:input function that we described earlier has

been dropped in favor of external variables.

A variant of the fn:collection function

without an argument has been introduced to refer to a

default collection that may be supplied by the host

environment.

Variables may be provided by an

implementation for use in a query. A query may also

define external variables and expect values for these

variables to be provided by the host environment.

The variable declaration may include a type for the

variable. If it does not, then the host environment

provides the variable’s type as well as its value.

The following query might be executed with

the $custName variable bound to “Big Box”.

declare variable $custName as xs:string
external;

fn:doc('orders.xml')
 /

→
orders/order[@cust=$custName]

<order id='444378' cust='Big Box'>
 ...
</order>

Steps that Return Atomic Values

In XPath 1.0, the result of a step in a path expression

was a sequence of nodes in document order with

duplicates removed. XQuery 1.0 and XPath 2.0 allow

the final step in a path expression to produce a

sequence of atomic values. A query for the cities and

states of all California employees can be written as:

//employee[address/state='CA']
 /address/concat(city, ', ', state)

rather than:

for $a in //employee[address/state="CA"]
 /address
return concat($a/city, ', ', $a/state)

Declarations in the XQuery Prolog

A number of declarations have been added to

XQuery’s prolog. Some of these are the boundary-

space declaration, base URI declaration, construction

declaration, copy namespaces declaration, and option

declaration. We’ll discuss a couple of these in this

section.

Boundary Space

The boundary-space declaration has values of

preserve and strip, and determines whether

boundary whitespace is preserved by element

constructors. Let’s look at an example:

SIGMOD Record, Vol. 34, No. 4, Dec. 2005 79

declare boundary-space preserve;

<test> <inner-element/> </test>

The test element that is returned has 3

children; a text node containing several spaces, an

element node, and another text node. If strip had

been chosen, then the element node would be the

only child. If this declaration is not used, then strip

is the default.

Construction

The construction declaration also has values of

preserve and strip. Here, a user chooses whether

type annotations are preserved in the construction of

new element and document nodes. If strip is

chosen, then the constructed element node and all of

its children are annotated with xdt:untyped, and all

of its attribute nodes are annotated with

xdt:untypedAtomic. If preserve is chosen, then

the constructed element node is annotated with

xdt:anyType, and all of its element nodes and

attribute nodes retain their existing annotations.

Option

An option declaration is one of several extension

mechanisms that XQuery provides to implementers.

An option declaration contains a QName and string.

If the QName is recognized by an implementation,

then it can have whatever effect on the processing of

the query the implementer chooses. If it is not

recognized, then it is ignored. In this way, the

extensions of one implementation will not cause

execution on another implementation to fail.

Let’s consider an extension that allows a

user to set a timeout value, in seconds, after which

the query will stop and return an error.

declare namespace myxquery='...';
declare option myxquery:timeout '10';

for $e in //employees ...

Expressions

castable, extension, ordered, and unordered

have been added to the set of XQuery expressions

and the syntax has been changed just a bit for cast,

node comparison, and validate.

expression type expression syntax

cast expr cast as type

castable expr castable as type

validate validate { expr }
validate lax { expr }
validate strict { expr }

node comparison is (isnot was dropped)

extension (see below)

ordered ordered { expr }

unordered unordered { expr }

Castable

castable returns a Boolean value that indicates

whether the value provided can be successfully cast

to the type provided. Without this expression, a user

would not be able to prevent the failure of a cast

becoming a failure of the entire query. (Exception

handling is something that might be considered in a

future version of XQuery.)

Ordered and Unordered

An ordered expression sets the ordering mode to

ordered for the expression that it contains. An

unordered expression sets the ordering mode to

unordered.

Path expressions that include a “/” or “//”

operator or a step, set expressions (union,

intersect, and except), and FLWOR expressions

without an order by clause are sensitive to the

setting of the ordering mode. When it is ordered,

each produces its sequence of items in document

order. When it is unordered, each produces its

sequence of items in an arbitrary order. Relaxing the

order of the items may allow an optimizer to choose a

lower-cost strategy for evaluating the query.

The initial ordering mode can be set by a

user in the query prolog. If it is not set, then the

default ordering mode is ordered.

The following query returns New York

employees in an arbitrary order, but it uses ordering

in the inner path expression to select employees

whose last title is “VP”.

declare ordering unordered;

for $e in ordered {
 //employee[titles/title[last()] = 'VP'] }
where $e[location/@state='NY']
return $e

Validate

The validate expression applies XML Schema

validation to its argument. Its argument is first

converted into an infoset, discarding any type

 80 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

annotations that it might have contained. The result

of validation is a new element (with new contents and

new identity) with type annotations. If validation is

not successful, then a dynamic type error is raised.

Type annotations can be applied to a

constructed element using the validate expression:

validate { <myco:employee id='440612'>
 <name>Augustus Child</name>
 .
 .
 .
 </myco:employee>
 }

In this case, the myco schema must contain a

globally defined element employee. The name

element in the constructed element has type

xdt:untyped, while in the validated result it might

have type myco:nameType.

Extension

An extension expression is another extension

mechanism provided to implementers by XQuery.

Where an option declaration has an effect for the

entire query, an extension expression has a narrower

scope. Let’s use the following example to explain this

construct.

declare namespace xq1="...";
declare namespace xq2="...";

for $e in //employee[name='Jon Postel']
return (# xq1:prose English #)
 (# xq2:roman lower-case #)
 { $e/badge cast as xs:string }

These pragmas “(# … #)”, if they are

recognized, might change the behavior of casting

values to strings. This query might produce “One

Hundred Fifty Four” if it recognizes xq1:prose,

“cliv” if it recognizes xq2:roman, and “154” if it

recognizes neither of them. The expression in curly

braces “{}” can be omitted. If it is omitted and none

of the pragmas is recognized, then an error is raised.

URI Values

XQuery has long allowed the type promotion of

numeric values, from xs:decimal to xs:float and

from xs:float to xs:double. Since our earlier

article, XQuery has added promotion from

xs:anyURI to xs:string.

Without this change, a query on an untyped

document written as:

let $xq := 'http://www.w3.org/TR/xquery/'
return count(//bib[ref=$xq])

would cause a type error for a typed document due to

the comparison of an xs:anyURI and an xs:string

value. It would have to be rewritten as:

let $xq := 'http://www.w3.org/TR/xquery/'
return count(//bib[ref=xs:anyURI($xq)])

Types

Some of the type designators have changed since our

last article. Rather than going through BNF, we’ll

just look a number of examples:

xs:integer? a sequence of zero or one

integer

element()+ a sequence of one or more

elements

node()* a sequence of zero or

more nodes

item()+ one or more items

attribute() an attribute (single) of any

name and type

element

 (myco:address)
an element with name
myco:address

element

 (*, myco:addrType)
an element of any name,

with type
myco:addrType

schema-element(zip) an element named zip (or

in a substitution group

headed by zip) with a

type annotation that

matches the type of zip

element

A type designator might be used as follows:

//employee
 [* instance of
 element (*, myco:addrType)

]
Earlier versions of XQuery allowed

reference to be made to element and attributes that

were locally declared in a schema, but this feature

was dropped.

FLWOR Expression

The FLWR (for, let, where, return) expression has

become the FLWOR expression (where “O” stands

for “order by”.

Each order by clause can contain multiple

sort keys, each of which contains an expression and

may contain an indication of whether the sorting

should be stable, whether it should be ascending or

descending, whether an empty sequence is considered

greater than or less than any item, and whether a

SIGMOD Record, Vol. 34, No. 4, Dec. 2005 81

collation sequence other than the default collation

sequence should be used.

Each expression in the order by clause is

evaluated for each of the bindings of the variables in

the for and let clauses that are not eliminated by

the where clause. If any expression produces a

sequence of more than one item, then an error is

returned. Any values that are of type

xdt:untypedAtomic are cast to xs:string. If, for

any sort key, the values differ in type (after

considering subtype substitution and type

promotion), then an error is returned.

The following query returns recently hired

employees ordered first by their years of education

and then by their department.

for $e in doc('employees.xml')//employee
where current-date() - $e/hireDate
 < xdt:dayTimeDuration('P60D')
order by
 $e/HSYears + $e/CollegeYears descending,
 $e/dept empty greatest
return $e

The choice of whether an empty sequence is

greater than or less than an item can be made in the

query prolog. An XQuery implementation can

choose either of these as its default behavior.

The FLWOR expression also gained an at

clause that binds the position of the item in the

sequence at the same time that it binds the value of

that item.

The following query returns the 10

employees that have been with the company the

longest:

for $e at $p in
 (for $oe in //employee
 order by $oe/@hireDate descending
 return $oe)
where $p <= 10
return $e

In-scope Namespaces

XQuery has chosen not to support namespace nodes

and a namespace axis, as XPath 1.0 did. Instead,

XQuery associates a set of in-scope namespace

bindings with its nodes.

XQuery also has a set of statically known

namespaces, which are used when resolving its

QNames. These statically known namespaces include

fn, xml, xs, xsi, xdt, and local. An

implementation may add its own namespace

bindings, and a user may add to all of these bindings

in the query prolog:

declare namespace
 myco="http://www.example.com/myco";

<myco:result> { for ... } </myco:result>

The in-scope namespaces may affect how an

element node is serialized and may also affect the

behavior of a small number of functions. The node

constructed in this example has one namespace

binding associated with it. The namespace for myco

is taken from the statically known namespaces when

the node is constructed.

When a node is constructed, its namespace

bindings include the one used in the element name,

those used in the attribute names, those defined by

namespace declaration attributes, and those in

namespace attribute declarations of enclosing

element constructors that have not been overwritten.

Let’s consider the following example:

import schema namespace hr="...";

validate strict {
 <hr:employee>
 <hr:skill xsi:type="xs:string">
 unicycling
 </hr:skill>
 </hr:employee>
}

This query will raise an error, because a

binding for xs will not appear in the infoset that is

validated. The xsi:type attribute is given no special

consideration by XQuery. “xs:string” is just an

untyped attribute value, it is not seen as a QName,

and so xs does not get added to the in-scope

namespaces. This means that it does not become part

of the infoset. This query can be fixed by changing

the start tag as follows:

<hr:employee xmlns:xs
 ="http://www.w3.org/2001/XMLSchema">
 .
 .
 .
</hr:employee>

Finer-grained control over the in-scope

namespaces of constructed nodes is available to a

user via the copy-namespaces declaration in the

query prolog.

Modules

A library module is a collection of variables and

functions in a target namespace that can be imported

into a query.

module namespace univ
 ="http://www.example.com/university";

declare function univ:gpa
 ($e as element (student)) as xs:decimal
 { for ... } ;

This function could be invoked in a query in

the following way:

 82 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

import module namespace univ
 ="http://www.example.com/university";
declare variable $id external;

univ:gpa(//student[id=$id])

XQueryX
XQueryX [9] defines an XML representation of

XQuery. It defines an element structure that mirrors

the abstract syntax of XQuery. The definition of

XQueryX has changed quite a bit since we showed it

to you last. Example 1 contains a simple XQuery and

the corresponding XQueryX representation.

While XQueryX is harder for a human to

read and write than XQuery, it does have several

useful properties. It is easily generated by tools and

layered applications, it is easily embedded within

larger XML documents, and it allows “queries on

queries”.

Of course, all changes made to XQuery

apply equally to XQueryX. But there is another fairly

important change that has been made to XQueryX.

When we last showed it to you, the XML Schema

that defines the XQueryX syntax was based on a sort

of type hierarchy that turned out to be difficult to

maintain as new features were added to the language,

and also somewhat difficult for human readers to

keep in their minds. That hierarchical design has been

replaced with one based on XML Schema’s

substitution groups. This sort of approach is more

readily extensible when new language features are

created, and also more familiar to Schema experts.

for $b in .//book
return $b/title

→

<xqx:module
 xmlns:xqx="http://www.w3.org/2005/XQueryX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <xqx:mainModule>
 <xqx:queryBody>
 <xqx:flworExpr>
 <xqx:forClause>
 <xqx:forClauseItem>
 <xqx:typedVariableBinding>
 <xqx:varName>b</xqx:varName>
 </xqx:typedVariableBinding>
 <xqx:forExpr>
 <xqx:pathExpr>
 <xqx:argExpr>
 <xqx:contextItemExpr/>
 </xqx:argExpr>
 <xqx:stepExpr>
 <xqx:xpathAxis>
 descendant-or-self
 </xqx:xpathAxis>
 <xqx:anyKindTest/>
 </xqx:stepExpr>
 <xqx:stepExpr>
 <xqx:xpathAxis>child</xqx:xpathAxis>
 <xqx:nameTest>book</xqx:nameTest>
 </xqx:stepExpr>
 </xqx:pathExpr>
 </xqx:forExpr>
 </xqx:forClauseItem>
 </xqx:forClause>
 <xqx:returnClause>
 .
 .
 .
 </xqx:returnClause>
 </xqx:flworExpr>
 </xqx:queryBody>
 </xqx:mainModule>
</xqx:module>

Example 1 – Equivalent XQuery and XQueryX

SIGMOD Record, Vol. 34, No. 4, Dec. 2005 83

Several minor changes were also made to

XQueryX’s Schema. The most significant change is a

new Schema element, <xqx:xquery>, used for a

trivial embedding of XQuery (human-readable) text

into XML documents.

XQuery and XQueryX
Conformance
Both XQuery and XQueryX have conformance

statements that define Minimal Conformance and a

set of optional features.

Minimal Conformance is the lowest level of

conformance that can be claimed for XQuery.

Minimal Conformance encompasses all XQuery

functionality, with the exception of the following

optional features:

 Schema Import Feature – allow the use of

import schema in the prolog to make XQuery

aware of the declarations of elements, attributes,

and types.

 Schema Validation Feature – allows the use of

the validate expression.

 Static Typing Feature – requires XQuery to

detect and report type errors during the static

analysis phase. Some queries that might run

successfully without static typing will return an

error during static analysis.

 Full Axis Feature – allows the use of the

“reverse axes” ancestor, ancestor-or-self,

following, following-sibling,

preceding, and preceding-sibling.

 Module Feature – allows the use of import

module in the prolog and allows library modules

to be created.

 Serialization Feature – requires that an

implementation provide a way to produce an

XML serialization of the result of a query.

 Trivial XML Embedding Feature – allows an

query to be provided as an XML element.

<xqx:xquery>for $e in ... </xqx:xquery>

Future Work
While we continue to move XQuery 1.0 through the

W3C process towards its publication as a

Recommendation, we have work underway that will

add to XQuery 1.0.

Several Working Drafts (WD) have been

published for XQuery 1.0 and Path 2.0 Full-Text [7].

Requirements have been published for an XQuery

Update Facility [8], but an initial WD has not yet

been published.

We expect that early next year the XML

Query WG will begin considering features that could

not be included in XQuery 1.0 for a future version of

this Recommendation.

References
[1] An Early Look at XQuery, Andrew Eisenberg

and Jim Melton, ACM SIGMOD Record, Vol.

31, No. 4, December 2002,

http://www.sigmod.org/sigmod/record/issues/02

12/AndrewEJimM.pdf.

[2] W3C XML Query (XQuery),

http://www.w3.org/XML/Query/.

[3] W3C Technical Reports and Publications,

http://www.w3.org/TR/.

[4] XML Query Test Suite,

http://www.w3.org/XML/Query/test-suite/.

[5] XML Schema Part 2: Datatypes Second Edition,

Paul V. Biron and Ashok Malhotra, Oct. 28,

2004, http://www.w3.org/TR/xmlschema-2/.

[6] XSLT 2.0 and XQuery 1.0 Serialization, Michael

Kay, et al, Nov. 3, 2005,

http://www.w3.org/TR/xslt-xquery-serialization/.

[7] XQuery 1.0 and XPath 2.0 Full-Text, Sihem

Amer-Yahia, et al, Nov. 3, 2005,

http://www.w3.org/TR/xquery-full-text/.

[8] XQuery Update Facility Requirements, Don

Chamberlin and Jonathan Robie, June 3, 2005,

http://www.w3.org/TR/xquery-update-

requirements/.

[9] XML Syntax for XQuery1.0, Jim Melton and

Subramanian Muralidhar, Nov. 3, 2005,

http://www.w3.org/TR/xqueryx/.

 84 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

http://www.sigmod.org/sigmod/record/issues/0212/AndrewEJimM.pdf
http://www.sigmod.org/sigmod/record/issues/0212/AndrewEJimM.pdf
http://www.w3.org/XML/Query/
http://www.w3.org/TR/
http://www.w3.org/XML/Query/test-suite/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xquery-full-text/
http://www.w3.org/TR/xquery-update-requirements/
http://www.w3.org/TR/xquery-update-requirements/
http://www.w3.org/TR/xqueryx/

