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ABSTRACT
Scheduling is a key concern for the execution of performance-
driven Grid applications. In this paper we comparatively ex-
amine different existing approaches for scheduling of scien-
tific workflow applications in a Grid environment. We eval-
uate three algorithms namely genetic, HEFT, and simple
”myopic” and compare incremental workflow partitioning
against the full-graph scheduling strategy. We demonstrate
experiments using real-world scientific applications covering
both balanced (symmetric) and unbalanced (asymmetric)
workflows. Our results demonstrate that full-graph schedul-
ing with the HEFT algorithm performs best compared to
the other strategies examined in this paper.

1. INTRODUCTION
Scheduling of scientific workflow applications on the Grid
is a challenging problem, which is an ongoing research ef-
fort followed by many groups. Deelman [9] distinguishes
several workflow processing strategies covering trade-offs be-
tween dynamicity and look-ahead range in workflow process-
ing. In [3] Deelman proposed a scheduling strategy based
on initial partitioning of the workflow into sequential sub-
workflows, that are scheduled sequentially one after another.
Prodan [10] applied genetic algorithms [7] to schedule the
whole workflow at once, and rescheduling it many times
during the execution. These approaches were not compared
against each other.

In this paper we examine three scheduling algorithms to
evaluate their performance for scheduling scientific work-
flows in Grid environments. The scheduling algorithms com-
prise a genetic algorithm similar to the one presented in [10],
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the well-known HEFT algorithm [15], and a ”myopic” algo-
rithm. The HEFT algorithm is an extension for hetero-
geneous environments of the classical list scheduling algo-
rithm [8]. HEFT is a simple and computationally inexpen-
sive algorithm, which schedules workflows by creating an
ordered list of tasks out of the workflow, and mapping the
tasks to the resources in the most appropriate way. Execu-
tion order is based on the list created in the first two phases
of the algorithm. The last algorithm we applied is a simple
”myopic” algorithm, similar to the Condor DAGMan [12]
resource broker, which schedules the next task onto the best
machine available without any long-term optimization strat-
egy. The Grid model applied by us in the experiments as-
sumes high availability rate and good control over the re-
sources by the scheduler. This is not always assumed by
many other Grid research groups, but it is usually the case
for scientific workflows executed in research institutions.

Additionally, we compared different scheduling strategies
including full graph scheduling and incremental workflow
partitioning strategy [3]. The Myopic algorithm can be con-
sidered as a just-in-time scheduling strategy, as the schedul-
ing decisions made by the algorithm are optimized for the
current time instance.

In the remainder of this paper, we evaluate the scheduling
approaches through a series of experiments. We show, that
the HEFT algorithm is more effective and less time con-
suming than the genetic algorithms applied in [10]. HEFT
also performs substantially better than a simple Myopic al-
gorithm. We also show that the workflow partitioning ap-
proach described in [3] does not appear to imply any ad-
vantage over full-graph scheduling. For the class of strongly
unbalanced (asymmetric) workflows we highlight poor per-
formance of the incremental workflow partitioning and sim-
ple scheduling algorithms. Full-ahead scheduling with the
HEFT algorithm appears to perform best for unbalanced
workflows.

2. ASKALON ENVIRONMENT
ASKALON [5] is a Grid environment for composition and
execution of scientific workflow applications. The work-
flow model adopted in ASKALON is described in Section
3. The scheduler optimizes for performance using the exe-
cution time as the most important goal function. The sched-
uler interacts with the enactment engine (see Fig. 1) which
is a service that supervises the reliable and fault tolerant
execution of the tasks and transfer of the files. The resource

56 SIGMOD Record, Vol. 34, No. 3, Sept. 2005



broker and the performance predictor are auxiliary services
which provide information about the resources available on
the Grid, and predictions about expected execution times
and data transfer times. The performance monitoring ser-
vice provides up-to-date status information of the applica-
tion execution and of the Grid environment. This informa-
tion can be used by the scheduler to make a decision about
rescheduling.

The scheduler itself consists of several components. The
workflow evaluator transforms the dynamic and compact
representation of the workflows in a static structure as de-
scribed in Sec. 3. The scheduling engine performs the ac-
tual scheduling, applying one of the alternative scheduling
algorithms. The event generator is meant for generation
of rescheduling events to cope with the dynamic nature of
workflows and the Grid and is currently being implemented.

Figure 1: ASKALON environment architecture

3. WORKFLOW MODEL
Scientific workflows executed in the ASKALON environment
are based on the model described in the AGWL specifica-
tion language [13]. AGWL documents can express simple
DAGs as well as more sophisticated workflow graphs con-
taining loops and conditional branches which impose con-
trol flow decisions that can only be decided at runtime. The
condition of a conditional branch (either if-then or switch)
may be evaluated in various ways for different executions, or
a while-loop may have different number of iterations. Fur-
thermore, parallel-for loops are introduced to specify a large
number of parallel activities (hundreds) in a compact form,
for scalability reasons. Such parallel-for constructs may be
evaluated differently at run-time, depending on the parame-
ters of the current execution. The actual number of parallel
activities specified by a parallel-for construct may not be
known at the beginning of the workflow execution. In order
to apply a full-graph scheduling algorithm, all such uncer-
tainties have to be resolved. To this end, we make assump-
tions about the actual evaluation of the control structures.
If an assumption fails, the scheduler transforms the work-
flow once again in the proper way and reschedules it. This
approach may bring considerable benefit if the structure of
the workflow is predicted correctly (especially, when a strong
unbalance in the workflow is detected). If the conditions
are predicted incorrectly, the workflow execution time is the
same as in the case of a just-in-time strategy which sched-
ules only those parts of the workflow that are resolved at
the moment of scheduling. Fig. 5-8 show two such workflow
transformations applied to real Grid workflow applications
(see Section 6).

4. SCHEDULING ALGORITHMS
The scheduling algorithms under consideration map tasks
as part of workflows onto Grid sites (clusters). Each Grid
site consists of a set of CPUs, each of which is considered
as a single computational resource. If a task is executed on
a CPU, no other tasks can use the same CPU at the same
time. Execution times of tasks and data transfers generated
by the performance predictor are given as input data to the
scheduler.

4.1 HEFT algorithm
The HEFT algorithm that we applied consists of 3 phases:

1. Weighting assigns the weights to the nodes and edges
in the workflow;

2. Ranking creates a sorted list of tasks, organized in the
order how they should be executed;

3. Mapping assigns the tasks to the resources.

The weights assigned to the nodes are calculated based on
the predicted execution times of the tasks. The weights as-
signed to the edges are calculated based on predicted times
of the data transferred between the resources. In homoge-
neous environments the weights are equal to the predicted
times. In heterogeneous environments, the weights must be
approximated considering different predictions for execution
times on different resources, and for different data transfer
times on different data links. Several approximation meth-
ods were proposed and compared [11]. Each of them pro-
vides different accuracy for different cases. We chose the
arithmetic average.

The ranking phase is performed traversing the workflow
graph upwards, and assigning a rank value to each of the
tasks. Rank value is equal to the weight of the node plus
the execution time of the successors. The successor execu-
tion time is estimated, for every edge being immediate suc-
cessors of the node, adding its weight to the rank value of
the successive node, and choosing the maximum of the sum-
mations. A list of resources is arranged, according to the
decreasing rank values. An example workflow graph with
the calculated weights and ranks is shown in Fig. 2. The
example considers 3 heterogeneous resources R1, R2 and
R3. Data transfer is assumed to be equal in both directions
between any two of those resources.

In the mapping phase, consecutive tasks from the rank-
ing list are mapped to the resources. For each task, the
resource which provides the earliest expected time to finish
execution is chosen. The pseudocode of the HEFT algorithm
is depicted in Alg. 1.

4.2 Genetic Algorithms
Genetic Algorithms are a part of evolutionary computing,
inspired by Darwin’s theory of evolution. They represent
powerful optimization heuristics, used to search global min-
ima in multi-dimensional search spaces. The basis of the al-
gorithm is to encode possible solutions of the problem into
a population of chromosomes, and subsequently to trans-
form the population using standard operations of selection,
crossover and mutation, producing successive generations.
The selection is driven by an established fitness function,
which evaluates the chromosomes in terms of accuracy of
the represented solutions. Crossover and mutation respond
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Figure 2: Weights and ranks calculated with HEFT
algorithm

algorithm 1 HEFT algorithm

T - set of all tasks in the workflow,

E - set of all dependencies in the workflow,

R - set of all available resources,

(t1, t2) - dependence between tasks t1 and t2

time(t, r) - execution time of task t on resource r,

time(e, r1, r2) - data transfer time of data between

resources r1 and r2 (dependence e in the workflow),

## Weighting phase##

for each t ∈ T do

~ w(t) =
P

r∈R time(t,r)

#R

for each e ∈ E do

~ w(e) =
P

r1,r2∈R,r1 6=r2
time(e,r1 ,r2)

#R·(#R−1)
##Ranking phase##

Succ = {(t1, t2) : t1, t2 ∈ T ∧ (t1, t2) ∈ E}
Nsucc = Succ

NT = T

while NT 6= {} do

~ Last = {t : t ∈ NT ∧ ¬∃t1 : (t, t1) ∈ NSucc}
~ for each t ∈ Last do

~ LS(t) = {t1 : (t, t1) ∈ Succ}
~ rank(t) = w(t) + max({0} ∪ {r : r =
w(t1) + w((t, t1)) ∧ t1 ∈ LS(t)})
~ NSucc = NSucc \ {(t1, t) : (t1, t) ∈ NSucc}
~ end

~ NT = NT \ Last

end

ranking list = sort(T, rank)
##Mapping phase##

for i = #ranking list downto 1 do

t = ranking list[i]
~ Find resource r ∈ R : finish time(t, r) is min;

~ Schedule t to r;

~ Mark r as reserved until finish time(t, r);
end

to standard biological operations of mutual exchange of a
part of body within a pair of chromosomes, and of change
of some elements (so-called genes) in the chromosomes ran-
domly selected from the population. The end condition of a
genetic algorithm is usually the convergence criterion which
checks how much the best individual found changes between
subsequent generations. A maximum number of generations

can also be established. The pseudocode of a genetic algo-
rithm is presented in Alg. 2.

algorithm 2 Genetic algorithm

Create the initial population of chromosomes;

while convergence criteria is false do

~ Perform crossover and mutation;

~ Calculate fitness values for the population;

~ Create a new population, based on actual fitness

values;

end

Genetic Algorithms are a good general purpose heuristic,
which is able to find the optimal solution even for compli-
cated multi-dimensional problems. By transforming a broad
population of chromosomes in a semi-random manner, the
entire search space is traversed and the search does not end
up in a local minimum. However, Genetic Algorithms are
not equally appropriate for every possible optimization prob-
lem. Solutions of the problem must be properly encoded
into the chromosomes, which is not always feasible. Prodan
in [10] encoded the actual mapping of tasks to the resources
without specifying the order of execution of independent
tasks (not linked through control and data flow dependen-
cies) that are scheduled on the same CPU. Therefore this
execution order cannot be a subject to optimization. More-
over, Genetic Algorithms tend to be computationally exten-
sive.

4.3 Myopic algorithm
To compare the scheduling algorithms described so far, we
developed a simple and inexpensive scheduling algorithm,
which makes the planning based on locally optimal deci-
sions. The algorithm represents a class of schedulers cover-
ing for instance the Condor DAGMan resource broker which
employs the matchmaking mechanism [12]. The pseudocode
of the algorithm is described in Alg. 3.

algorithm 3 Myopic algorithm

T - set of all tasks in the workflow,

NT = T

while NT 6= {} do

~ Find task t ∈ NT : earliest starting time(t) is

min;

~ Find resource r ∈ R : finish time(t, r) is min;

~ Schedule t to r;

~ Mark r as reserved until finish time(t, r);
~ NT = NT \ {t}
end

The Myopic algorithm can produce reasonably accurate
results for rather simple workflows given accurate perfor-
mance predictions. But it does not provide any full-graph
analysis and does not consider the order of task execution.

5. SCHEDULING STRATEGIES
Different scheduling strategies [9] can be applied, consider-
ing the trade-off between dynamicity and look-ahead range
in workflow processing. Just-in-time strategy, in [9] referred
to as in-time local scheduling, consists of mapping the tasks
to the resources, always choosing the most appropriate solu-
tion for the current step. This approach benefits from using
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the most up-to-date performance data, which is important
for the Grid, but on the other hand it neglects the graph
structure, and the whole workflow may not be scheduled
optimally. At the other extreme, we have full-ahead plan-

ning where the full-graph scheduling is performed at the
beginning of execution. In this case, a sophisticated graph
scheduling algorithm can be applied, but the dynamism of
the Grid is not considered. Intermediate solutions try to
reconcile workflow planning with Grid dynamism, and to
find an approach which considers both the workflow struc-
ture and the Grid behavior. One of the possible solutions is
the workflow partitioning applied in the Pegasus system [3].
It consists of an initial partitioning of the workflow into a
sequence of subworkflows, which are subsequently scheduled
and executed (see Fig. 3).

Original Abstract
Workflow

A Particular Partitioning New Abstract Workflow

PW B

PW A

PW C

Figure 3: Workflow partitioning in Pegasus [3]

Each partitioning can be characterized by the width of a
slice. The width of a slice is expressed as maximal number
of node layers within each slice. For instance, the workflow
depicted on Fig. 3 was partitioned with one layer per slice
(1-layer partitioning). Any element of the sequence can be
scheduled and executed only if the immediate predecessor
has already finished its execution. This approach has an
advantage over the simple just-in-time scheduling, as the
planner considers more than one task at the time, and has
a better overview of the whole graph.

Full-graph scheduling, however, can also be applied in a
dynamic way. If we do not consider the initial scheduling
as the ultimate decision but only a hint, and if we admit
subsequent reschedulings if they are necessary, we can ap-
ply a full-graph scheduling algorithm many times during the
execution of a workflow. One of the workflows we applied in
our experiments belongs to a specific class of strongly un-
balanced workflows, which seems to require full-graph anal-
ysis for proper scheduling. The workflow contains a paral-
lel section and some of the branches take longer to execute
than the others (see Fig. 8). The tasks that belong to the
longer branch should, therefore, execute with higher priority
than the ones that belong to the shorter branches. One im-
portant goal of our experiments was to investigate how the
scheduling results depend on the workflow strategy applied
for strongly unbalanced workflows.

As our experiments concern scientific workflows executed
in research institutions, we assume high availability rate and
good control over the resources, what is not always the case
for best-effort Grid schedulers. In particular, we assume
that the scheduler can have precise information about the
resources available in the Grid, and the submissions made
by the scheduler are executed as they were requested. We
also assume that no failures occur during the execution, so
that the execution of the workflow is performed in the same
way as it was planned by the scheduler.

6. EXPERIMENTAL RESULTS
In our experiments we compare the HEFT algorithm with
a genetic algorithm similar to the one proposed in [10], and
with the Myopic algorithm described in Section 4.3. We
also compare the full-graph scheduling with the workflow
partitioning strategy. As results, we show execution times
of the scheduled workflow applications (execution times),
and the times spent in preparing the schedules (scheduling

times). The execution times were measured for two scenar-
ios of workflow execution. In the first scenario, we do not
provide to the scheduler any performance predictions, so
the scheduler has to assume that all the execution times are
equal for all tasks on all the resources (scheduling without

performance guidance). In the second scenario, the sched-
uler is provided with experience-based performance predic-
tions derived from historical executions (scheduling with per-

formance guidance). The predictions were provided to the
scheduler in a two-dimensional array, containing the execu-
tion time of each task on each computer architecture avail-
able in our Grid. The assumption was that each task takes
the same execution time on every machine that belongs to
the same type (i.e, has the same CPU model, CPU speed
and total RAM size).

Experiments were performed incorporating seven Grid sites
(clusters) of the Austrian Grid [2] infrustructure with 116
CPUs in total (not all Grid sites were used in all the ex-
periments). In Fig. 4 we present the performance of the
individual clusters, where each cluster shows the average
execution time of all the workflow tasks executed on a sin-
gle CPU. As we can see, the fastest cluster is more than
three times faster than the slowest one.

Figure 4: Performance of Grid clusters used in the
experiments.

Similarly to execution time predictions, the execution times
of the tasks on the sites were measured on the Austrian Grid
during a test phase. Time consumed by data transfers be-
tween two tasks connected with a data link was considered
as constant. We also fixed the middleware overhead intro-
duced by the Globus GSI security [6] and the PBS queuing
system [14] to 30 seconds.

We used two real-world workflow applications in our ex-
periments. WIEN2k [1] is a quantum chemistry application
developed at Vienna University of Technology. WIEN2k
workflow (Fig. 5) is a fully-balanced workflow which con-
tains two parallel sections with possibly many parallel tasks,
and an external loop. For our tests we considered the work-
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flow with one iteration of the loop, and 250 parallel tasks
in each section (Fig. 6). Invmod [4] is a hydrological ap-
plication developed at the University of Innsbruck, designed
for calibration of parameters for the WaSiM tool developed
at the Swiss Federal Institute of Technology Zurich. The
Invmod workflow (Fig. 7) consists of an outermost parallel
loop with many iterations (executed as separate threads),
which contains a nested optimization loop. We used this
workflow to simulate the common case of strongly unbal-
anced workflow. If the loops in individual workflow threads
have different numbers of iterations (and the iteration num-
bers are predicted correctly), then the threads may differ
significantly with regard to their expected execution times.
The workflow used for these experiments (Fig. 8) contains
100 parallel iterations one of which contains 20 iterations of
the optimization loop. The remaining 99 iterations contain
10 optimization iterations each. It means, that one of the
threads takes approximately twice as much execution time
as all others.

Figure 5: WIEN2k, original workflow.

Figure 6: WIEN2k, transformed workflow.

The genetic algorithm that we applied is based on the pop-
ulation of 100 chromosomes transformed in 20 generations,
which is not a large number but it allowed us to achieve a
good convergence rate with relatively small scheduling time.
Probability of crossover was fixed by us to 0.25, and muta-
tion rate to 0.01. We performed workflow partitioning by di-
viding the workflow into slices with well-defined width (see

Figure 7: Invmod, original workflow.

100

Figure 8: Invmod, transformed workflow.

Section 5). For the WIEN2k workflow (consisting of five
layers) we applied a three-layer partioning, and for Invmod
workflow (which consists of 44 layers) we applied three dif-
ferent partitionings, with 10, 20 and 30 layers.

Figure 9: WIEN2k executed in heterogeneous envi-
ronment, execution time.

The first conclusion we draw from the results (Fig. 9-12)
is that performance prediction is very important in hetero-
geneous Grid environments. For both workflows, the results
achieved with performance guidance are in the best case
nearly two times better that the results achieved without
performance guidance. Performance estimates are clearly
important even if they are not highly accurate.
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Figure 10: WIEN2k executed in heterogeneous en-
vironment, scheduling time.

Figure 11: Invmod executed in heterogeneous envi-
ronment, execution time.

Figure 12: Invmod executed in heterogeneous envi-
ronment, scheduling time.

Comparing the results measured for the WIEN2k work-
flow we can notice that HEFT produces much better results
than the other algorithms. Execution time of the workflow
is 17% shorter than for the genetic algorithm, and even 21%
than for the Myopic. The simple solution applied in Myopic
appears to be insufficient for large and complicated work-
flows, and the algorithm produces the worst results. Also
the genetic algorithm appears to be not a good method to
deal with our problem. It was able to approximate the global

maximum, but it did not find the actual best value which
lies probably in a ”long and narrow corner” of the search
space. For the scheduling without performance guidance,
where the search space has more regular borders, the ge-
netic algorithm behaves equally good (or even better) than
all the other algorithms. Comparing the scheduling times of
individual algorithms we can see that the genetic algorithm
executes two to three orders of magnitude longer than the
others. It means, that even to generate a single population
takes much longer than the HEFT algorithm.

Figure 13: Invmod executed in homogeneous envi-
ronment, execution time.

The results measured for the Invmod workflow present
how individual algorithms deal with strongly unbalanced
workflows. As expected, the Myopic algorithm provides the
worst results of all, approximately 32% worse than HEFT.
The genetic algorithm produces quite good results. It was
able to locate the area where the global minimum is located,
but it was not able to find the best possible solution, since
the order of execution (of independent tasks scheduled to
the same CPU) was not considered for optimization. In the
workflows scheduled without an established task order, the
tasks are executed in an arbitrary order chosen by the run-
time system. For a strongly unbalanced workflow, however,
the tasks that execute in iterations of the parallel loop with
longer execution time should be executed more often than
the others, which cannot be done by the runtime system
which does not consider global graph structure. Scheduling
strategies based on the workflow partitioning were also not
able to find the optimal solution, although their results are
still better than the one found by the Myopic algorithm.
Only the full-graph analysis could find a well performing
scheduling solution for imbalanced workflows. Since all of
the algorithms (except for the genetic algorithm) execute
really fast (less than 20 seconds for large and complicated
workflows), there is no reason to apply the partitioning strat-
egy in place of the full-graph analysis.

Fig. 13 presents the execution results of the Invmod work-
flow on a homogeneous environment (three nearly identical
Grid sites). As expected, there is now almost no difference
between the scheduling with and without performance guid-
ance, as the execution on each cluster takes the same time.
Again, HEFT produces the best results, 24% better than
Myopic.
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7. CONCLUSIONS AND FUTURE WORK
Scheduling applications on the Grid is of paramount impor-
tance to optimize non-functional parameters such as execu-
tion time. In this paper we compared three different algo-
rithms examining aspects such as incremental versus full-
graph scheduling for balanced versus unbalanced workflows.

Based on two real world Grid workflows we observed that
the HEFT algorithm appears to be a good and computation-
ally inexpensive scheduling algorithm that performs better
than the other 2 candidates discussed in this paper.

We also investigated a specific class of strongly unbalanced
workflows. We demonstrated that any just-in-time schedul-
ing strategy is likely to produce poor results for workflows
of this class. Also the workflow partitioning strategy used
in Pegasus system [3] appears to have no advantage over the
full-graph scheduling, and may produce less efficient results
for unbalanced workflows.

We implemented the HEFT algorithm in the ASKALON
environment for scheduling scientific workflow applications
on the Grid. Future work on the presented scheduling strat-
egy will consist of making it more efficient for heterogeneous
environments. We will also examine how typical network
scenarios may disrupt the simple scheduling model based on
fixed values provided as performance predictions.
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